
Faster than NERFs – 3D Models from 2D Images1

Aniket Rajnish2

Indian Institute of Technology, Gandhinagar, India3

http://makra.wtf4

aniket.r@iitgn.ac.in5

Progyan Das6

Indian Institute of Technology, Gandhinagar, India7

http://progyan.me8

progyan.das@iitgn.ac.in9

Abstract10

Slow inference and training times have always been an issue with Neural Radiance Fields, and11

voxel representations, often used in these papers, lead to prohibitively large memory requirements12

and very long waiting times. While the accuracy of NERFs are very high, we may be willing to13

sacrifice representation accuracy in the favour of time. We note that game-development, in particular,14

suffers from a large latency from ideation to the actual creation of assets for deployment.15

In addition, although faster implementations of NERFs, like Instant-NGP [4] and Plenoxels [7]16

have been famously published in the past year, we wanted to devise an end-to-end tool for going17

from an image to a quickly deployable 3D model with the least number of steps. Traditional ML18

techniques use voxel, mesh, or point-cloud based rendering techniques – these are volumetric, and19

often are bound by high time complexities (voxel-based rendering, for example, runs at O(N3)20

where N is the number of voxels, or 3-dimensional pixels, we are rendering). Instead, we use Signed21

Distance Functions, a (somewhat) more complicated but overall less algorithmically complex solution22

for rendering, that sacrifices some benefits of volumetric rendering for speed.23

To make this possible, we wrote our own raymarching rendering engine on C# and HLSL (short24

for High-Level Shader Language, a C-like language for use in Direct3D applications[3]), implemented25

it in Unity, and combined it with a Convolutional Neural Network trained on a custom data-set26

made on Blender. Our functioning assumption is that most complex shapes that we may want to27

approximate may be built with a set of 35 primitive shapes and an accompanying boolean expression28

combining a few operations (union, intersection, subtraction). This is the foundational principle of29

Constructive Solid Geometry[8], and we have found that it works with great effect in our project.30

Our end-product, SDFNet, is a tool built by game-developers, for game-developers, that takes a31

simple 2D image, and generates a 3D, surface-rendered model that is immediately deployable for32

development.33

34

1 Implementing the State of the Art35

Before we started writing our own rendering engine, we wanted to see how Neural Radiance36

Fields are implemented in python. To that end, we implemented a truncated version of the37

classical NERF paper from Nvidia Research, based on pytorch3D documentation[1].38

1.1 Neural Radiance Fields (NERFs) through raymarching39

The input is a number of images of the target, from different angles and their corresponding40

cameras, and our network attempts to build a scalar field that allows us to generate views41

from any other angle. To fit the radiance field, we render it from the viewpoints of the target42

cameras, and we compare the results with the observed target images and target silhouettes.43

CS 399|499, IIT Gandhinagar

https://orcid.org/0000-0002-1825-0097
http://makra.wtf
mailto:aniket.r@iitgn.ac.in
https://orcid.org/0000-0002-1825-0097
http://progyan.me
mailto:progyan.das@iitgn.ac.in
https://www.dagstuhl.de/lipics/

:2 Faster than NERFs – 3D Models from 2D Images

Figure 1 Side-by-side: the drop in the huber loss, and our trained model.

Loss is calculated as the mean huber loss (related to smooth-L1 loss) between rendered44

colours and the sampled target images, predicted masks and sampled target silhouettes.45

We use two losses –46

1. The color loss – as it is traditionally used in NERFs, the color loss essentially compares47

a snapshot of the model from the same camera position and angle with the data-point,48

which in this case is our corresponding image.49

50
ray_color = sampled_images (51

target_images [batch_idx],52

sampled_rays .xys53

)54

color_error = jnp.mean(55

jnp.abs(56

huber_loss (57

rendered_images ,58

colors_at_rays ,59

)))6061

2. The silhouette loss – the silhouette loss forces the model to absorb the rays where necessary,62

and not pass through it, and vice-versa. This is possible because our dataset comes with63

segmentation-masks – otherwise, we could have used an architecture like Mask-RCNN for64

image segmentation and obtained a good approximate for the same.65

66
silhouettes_at_rays =67

sampled_images (68

target_silhouettes [batch_idx , None],69

sampled_rays .xys70

)71

sillhouette_err = jnp.mean(72

jnp.abs(73

huber(74

rendered_silhouettes ,75

silhouettes_at_rays ,76

))7778

1.2 Drawbacks of NERFs79

As we can see, current state-of-the-art techniques produce very accurate results. However,80

as the paper mentions, they are slow, and often prone to taking hours to train. While it is81

A. Rajnish and P. Das :3

possible to do away with neural networks and use classical machine learning for a speedup82

[7], we wanted to minimize the time-consuming process of training a radiance field altogether,83

and therefore, we decided to shift to neural networks only for detecting shapes and structures84

in our images, and not for reconstructing our models from the images.85

2 Signed Distance Functions and Surface Rendering86

Computationally, geometry is often stored explicitly as a list of points, triangles, or other87

geometric fragments [5]; however, these methods are computationally expensive, and we88

can devise both parametric and non-parametric methods for expressing these geometries89

implicitly. Signed Distance Functions, therefore, are a method for parametric implicit surface90

representation. [6]91

These signed distance functions, or SDFs for short, are defined as continuous functions92

that, when passed the coordinates of a point in space, will return the shortest distance93

between that point and some arbitrary surface corresponding to that specific function. The94

sign of the return value indicates whether the point is inside that surface or outside (hence95

signed distance function).96

For example, for a sphere centered at the origin, the standard SDF is mentioned below.
[6]

f(p) = p⃗ − r⃗

2.1 Rendering Shapes97

We wrote an Image Effect shader to render objects directly in the screen space instead of98

creating instances of individual objects. We wrote a raymarching loop in the shader to render99

these shapes using their individual signed distance functions. All the parameters were taken100

from our model in a CSV file and were communicated to the shader from a C# script using101

Compute Buffers. The dimensional parameters were stored in a custom class of Vector12102

with 12 fields (maximum dimensional inputs that any shape can take) for floats, as the103

Shader language doesn’t support dynamic arrays. So these parameters were communicated104

in the following way:105

106
dimensions [0] = new vector12 (cyl.r, cyl.h, 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0);107

dimensions [1] = new vector12 (cap.r1 , cap.r2 , cap.h, 0, 0, 0, 0,108

0, 0, 0, 0 ,0);109110

Computer buffers were also used to communicate other information like the number of shapes111

to be rendered and the blend factor for the operations for each shape. All the shapes are112

rendered on render texture in front of the camera, the dimensions of which are communicated113

to the shader.114

2.2 Building a custom-editor in Unity115

A custom editor was developed in Unity to aid the need to fine-tune the objects rendered on116

the screen The editor could be accessed using the Unity’s inspector. The following parameters117

were governed using the Custom Editor –118

Shape Operation Color Blend Factor Dimension Factor119

:4 Faster than NERFs – 3D Models from 2D Images

Similarly, following spatial parameters were governed by the Unity’s inspector component120

–121

Shape position Shape Orientation (Quarternion/Euler Angles)122

3 Predicting Shapes – designing the Pipeline.123

We used a CNN architecture similar to Alex Net and built on top of that. The input to124

the model was an image of the object, in our example case, the bottle with a constructive125

geometry made of primary shapes. A total of 17 metadata entries, along with every image,126

were stored to reconstruct the model. These entries correspond to the presence, shape, and127

color of the sub-parts of the bottles. These were the output of the model.128

3.1 Architecture and Parameters of Neural Network.129

The architecture of the model consisted of CNNs, Pooling layers, activation functions such as130

ReLU, and dense linear layers towards the end. Finally, we received the 17 labels as output131

from the model, and these were read by the renderer. The output is received from the model132

in a csv sheet which includes –133

Parameter Data-type Description

Shape Index int Describes which out of a predefined list of primitives the
given shape is.

Shape Position Vector3 Describes the position of the shape in 3D space

Shape Rotation Vector3 Describes the orientation of the shape in 3D space
RGB Values Vector3 Denotes the RGB values of the color of the shape in the

form of a 3-dimensional vector.
Shape Dimensions Vector12 As a 12-dimensional vector, describes important absolute

and relative dimensions for attributes like radius, height, et
cetera, for the object. This is a sparse vector, and depending
on the shape, many or none of the components may remain
0.

134

3.2 Creating our dataset in Blender135

We used Blender to prepare the dataset of bottles of different shapes, sizes, and colours.136

Random gaussians were used to generate the dimensions of the bottles. The dimensions137

of the bottles along with the information of color were normalized before being fed to the138

model in the subsequent steps. The images and the information regarding the dimensions of139

the bottles were saved. Each bottle comprised two cylinders and one frustum. A total of140

17 metadata entries, along with every image, were stored to reconstruct the model. These141

entries correspond to the presence, shape, and color of the sub-parts of the bottles. In the142

end, 400 distinct data points were generated and used.143

3.3 In more detail: Parameters in use.144

The shape-index is an int used to determine the shape we’re trying to render. For instance,145

2 denotes a cylinder, and 5 denotes a Frustrum. The Shape Position basically represents146

the represents predicted center of mass of the segmented shapes. The coordinates of which147

are scaled values of the coordinates of the pixel. Thus, these dimensions are not absolute148

A. Rajnish and P. Das :5

Figure 2 A sample datapoint from the data-set, and the corresponding photograph.

but rather relative. The Shape Rotation values are the quaternion of the segmented shapes,149

again, it is calculated relative to the vertical axis. The RGB values are the average RGB150

values of each pixel on the segmented shapes. The Shape Dimensions are the individual151

dimensions required to define a particular shape. Take, for instance, a cylinder needs radius152

and height, a sphere just needs a radius, and a frustum/capped cone needs height, top, and153

bottom radius. Again, these are scaled values of the pixels covered.154

3.4 Justification: Why Unity?155

The Unity Engine was primarily used for the following reasons –156

1. To aid in rendering the shadows using Unity’s Directional Light Object. It takes its157

quaternion in Euler form (Vector3) into account.158

2. To map the 2D image onto the screen space using Camera Frustrum (Matrix 4 × 4) and159

Camera to World Matrix (Matrix 4 × 4).160

We wrote a custom Raymarcher class in C# to provide the following data manually –161

Parameter Data-type Description

Shape Count int The length of the rows of the csv sheet, i.e, the number
of shapes to be rendered on-screen.
We later refactored this to be part of the output file.

Operation Index int An integer value used to denote which operation (union,
intersection, subtraction) to perform with each shape.

Blend Factor float, 0 ≤ x ≤ 1 Whether or not to smoothen out the edges of different
shapes, and finely blend them with each other.

162

Ideally, the model should have predicted these data-points as well, but we couldn’t train it163

to do so at the moment and would be working on it further. We have found architectures like164

CSG-Net, that infer boolean expressions for Constructive Solid Geometry from 3D Models,165

that have piqued our interest, and we look forward to using them in our work.166

:6 Faster than NERFs – 3D Models from 2D Images

Figure 3 Left to right: How the blend factor increases from 0.36, to 0.59, to 0.93

3.5 Compute Buffer Conversion – C# to HLSL167

All this data is passed to an HLSL-based shader to be rendered. This communication between168

the shader and C is done using a Compute Buffer of stride (size) 96 bytes.169

Parameter C# HLSL (Compute Buffer Conver-
sion)

Shape Index int int

Shape Position Vector3 float3

Shape Rotation Vector3 float3

RGB Values Vector3 float3

Light Direction Vector3 float3

Camera Frustrum Matrix 4 × 4 uniform float 4×4
Camera to World Matrix Matrix 4 × 4 uniform float 4 × 4

Shape Count int int

Operation Index int int

Blend factor float float

170

Apart from this the Image Effect shader used additional parameters –171

1. Main Texture (sampler2D)172

2. Camera Depth Texture (sampler2D)173

3. Shapes (Structured Buffer)174

The Main Texture and Camera Depth Texture is used to render multiple objects in the175

screen space without needing to create an instance for each. These are Image Effect shaders,176

that work like a post-processing effect over the screen-space, as opposed to vertex-shaders177

that work in world-space, which makes them more efficient and light for rendering crowded178

scenes. Please note that the entire SDF renderer is written in HLSL.179

4 Putting it all together with raymarching.180

We use raymarching for rendering – here, all attributes of the scene are implicitly defined in181

terms of some signed distance function. To find the intersection between the view ray and182

the scene, we start at the camera, and move a point along the view ray. At each step, we183

check if the SDF evaluates to a negative number at that point. If it does, we consider this a184

collision and initialize a surface at the point. [6][2]185

This data is then used by the raymarching loop to decide the distance functions and186

operations for each shape and the parameters that these functions would use to render every187

A. Rajnish and P. Das :7

Figure 4 A flowchart of the entire pipeline for going from 2D image to 3D model

shape as perceived from the 2D image. The predicted model is surface-rendered and, as188

anticipated, comes with some flaws, which can later be fine-tuned using the custom editor189

that we wrote to reconstruct a fairly accurate model.190

Figure 5 Side-by-side: reconstructed, SDF-rendered model, and the input image

5 Scope for improvement.191

The pertinent areas of improvement for our tool have been listed below. These are areas of192

rapid development, and we foresee them being implemented very soon.193

:8 Faster than NERFs – 3D Models from 2D Images

1. Expanding for radially asymmetric geometries.194

Since our tool only takes into account one image, we understand that for asymmetric195

geometries, there shall exist attributes that are occluded in any one camera angle. In196

addition, even for radially symmetric geometries, our model requires an angle that properly197

exposes all primitives present in the shape.198

2. Expanding for complex foregrounds and crowded backgrounds.199

The model often fails for images with complex foreground geometries or crowded back-200

grounds. We wish to forego that limitation with a combination of foreground-background201

image segmentation, and some flavour of the CSG-Net model, to break images down to202

corresponding boolean expressions for constructive solid geometry.203

3. Raising number of primitives.204

While we believe the 30 primitives that have been integrated into the Raymarching engine205

should be enough to express most geometries out there, there might be some esoteric,206

complex shapes that our model may not be able to approximate. We hope to soon get207

from 30 primitives to a planned 47 primitives.208

4. Predict Blend factor and Operations.209

At the moment, our model does not predict the boolean operations and the blend factor.210

We wish that both can be implemented soon.211

5. Increase dataset variety.212

Our model was only trained on a dataset consisting of frustrums and cylinders, out of213

the 30 primitives available. We wish to increase that variety with a much wider number214

of primitives.215

6 Conclusion and acknowledgements216

We have been able to produce a functioning prototype that can take a simple 2D image of a217

radially symmetric geometry and reconstruct a 3D representation through signed distance218

functions, with a combination of constructive solid geometry and neural networks. There is219

huge scope for improvement, and we are excited to keep working on this project, and also220

branch out into other domains.221

We are thankful to Prof. Shanmuganathan Raman, for his guidance across the duration222

of the project. We are also grateful to his student, Ashish Tiwari, for his timely help in223

understanding hard concepts whenever we required it, and we are indebted to Shruhrid224

Banthia, a third-year undergraduate student at IIT Gandhinagar, who helped us build a225

significant portion of the tool.226

References227

1 Pytorch3d · a library for deep learning with 3d data. URL: https://pytorch3d.org/228

tutorials/fit_simple_neural_radiance_field.229

2 Ray marching and signed distance functions. URL: https://jamie-wong.com/2016/07/15/230

ray-marching-signed-distance-functions/.231

https://pytorch3d.org/tutorials/fit_simple_neural_radiance_field
https://pytorch3d.org/tutorials/fit_simple_neural_radiance_field
https://pytorch3d.org/tutorials/fit_simple_neural_radiance_field
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

A. Rajnish and P. Das :9

3 Yong He, Kayvon Fatahalian, and Tim Foley. Slang: Language mechanisms for extensible real-232

time shading systems. ACM Trans. Graph., 37(4), jul 2018. doi:10.1145/3197517.3201380.233

4 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics234

primitives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15,235

July 2022. doi:10.1145/3528223.3530127.236

5 Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove.237

Deepsdf: Learning continuous signed distance functions for shape representation. CoRR,238

abs/1901.05103, 2019. URL: http://arxiv.org/abs/1901.05103, arXiv:1901.05103.239

6 Inigo Quilez. Signed distance functions. URL: https://iquilezles.org/articles/240

distfunctions/.241

7 Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and242

Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.243

8 Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:244

Neural shape parser for constructive solid geometry. CoRR, abs/1712.08290, 2017. URL:245

http://arxiv.org/abs/1712.08290, arXiv:1712.08290.246

https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3528223.3530127
http://arxiv.org/abs/1901.05103
http://arxiv.org/abs/1901.05103
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
http://arxiv.org/abs/1712.08290
http://arxiv.org/abs/1712.08290

	Implementing the State of the Art
	Neural Radiance Fields (NERFs) through raymarching
	Drawbacks of NERFs

	Signed Distance Functions and Surface Rendering
	Rendering Shapes
	Building a custom-editor in Unity

	Predicting Shapes – designing the Pipeline.
	Architecture and Parameters of Neural Network.
	Creating our dataset in Blender
	In more detail: Parameters in use.
	Justification: Why Unity?
	Compute Buffer Conversion – C# to HLSL

	Putting it all together with raymarching.
	Scope for improvement.
	Conclusion and acknowledgements

